Besov-Type Spaces on R and Integrability for the Dunkl Transform
نویسندگان
چکیده
In this paper, we show the inclusion and the density of the Schwartz space in Besov–Dunkl spaces and we prove an interpolation formula for these spaces by the real method. We give another characterization for these spaces by convolution. Finally, we establish further results concerning integrability of the Dunkl transform of function in a suitable Besov–Dunkl space.
منابع مشابه
Characterization of Besov Spaces for the Dunkl Operator on the Real Line
In this paper, we define subspaces of L by differences using the Dunkl translation operators that we call Besov-Dunkl spaces. We provide characterization of these spaces by the Dunkl convolution.
متن کاملBesov–dunkl Spaces Connected with Generalized Taylor Formula on the Real Line
In the present paper, we define for the Dunkl tranlation operators on the real line, the Besov–Dunkl space of functions for which the remainder in the generalized Taylor’s formula has a given order. We provide characterization of these spaces by the Dunkl convolution.
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملAn analog of Titchmarsh's theorem for the Dunkl transform in the space $mathrm{L}_{alpha}^{2}(mathbb{R})$
In this paper, using a generalized Dunkl translation operator, we obtain an analog of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the Lipschitz-Dunkl condition in $mathrm{L}_{2,alpha}=mathrm{L}_{alpha}^{2}(mathbb{R})=mathrm{L}^{2}(mathbb{R}, |x|^{2alpha+1}dx), alpha>frac{-1}{2}$.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
متن کامل